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ABSTRACT

In this research. a sequence of models Is constructed to simulate the movement of fluids and

chemicals in the cerebrovascular system. One model simulates the nonsteady response of perdu-

sion in various sections of the brain. In a second model, certain relevant parts of the body are

added to form a single brain-body model. A third model simulates the transport of selected chemi-

cal components through the cerebrovascular system. Predictions derived from the brain model

were shown to be well within the range of available clinical observations. The brain-body model

describes the Interaction between the cerebral, the cardiovascular and the respiration systems. It

is excited by expiraftiontnspiration fluxes and accounts for the effects of hydrostatic, environmental

pressures, flight maneuvers with excessive (head to bottom) gravitation acceleration and resusci-

tation procedures. In simulating chemical processes in the brain, the model accounts for C0 2,

HCO 3 " and H+, as they are transported by perfusion and diffusion in the presence of chemical

reactions. This model also focuses on the flow control between brain arteries and capillaries, due

to changes in CO 2 concentration.
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NON-STEADY COMPARTMENTAL MODEL OF INTERACTIVE PERFUSION

BETWEEN CEREBRAL AND BODY SYSTEMS

S. Sorek,1 K. Allen,2 M. Feinsod, S. Ben Haim4

J. Bear5 and L. Bunt6

ABSTRACT

A lumped parameter model is developed to simulate perfusive flux and pressure interaction

between the cerebral and the body systems. Its objective Is to study the dynamic interaction

between the cranio-spinal, body respiratory and the heart systems that influence the brain, as well

as the influence of conditions in the environment on the body. By providing forecasts of depar-

lures from a normal behavior, the model will serve the following medical purposes: (a) tacilitate

the understanding of the physiology and the mechanisms that preserve the delicate brain In the

face of living stress, and (b) provide information for management In deviant cases.

The compartmental model consists of six compartments that describe the cerebral system,

and eight compartments that are assigned to the body system. The model also accounts for the

surrounding environment affecting the abdominal, inhale/exhale fluxes. Altitudes assigned to the

compartments introduce the effect of hydrostatic pressure.

Key Words: Compartmental modelling. interaction between cerebral respiratory and heart sys-

tems; perfusion flux and pressure; conductances; compliances; environmental

pressure; hydrostatic pressure; inhalelexhale fluxes.
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1. INTRODUCTION

In earlier papers (Kami at al. 1987; Sorek et al. 1987a, 1987), a compartmental model was

bult to simulate the perfusion In the cerebrovascular system. The model provided Information on

pressures and fluxes in response to excitation in the form of temporal flux and pressure changes

al the Internal carotid artery. The Influx to and efflux from the cerebrovascular system were Intro-

duced, respectively, as external conditions Imposed on the internal carotid artery, and the jugular

bulb.

In the present work, this model Is extended to include both the cerebrovascular and the body

system in a single model. The obctIve Is to enable the study of the dynamic interaction between

these two systems. In this model, relevant parts of the brain and of the human body are

represented as compartments that Interact with each other. e.g., in the form of pressure transmis-

sion and exchange of fluid. Each such compartment is represented by lumped, or averaged, pro-

perties and state variables of that organ. Examples of such lumped parameters are pressure in a

compartment, influx/efflux through its boundaries and fluid source/sink terms.

The compartmental model is comprised of six oarnpctments thaM represent the Cerebra sys-

tem and eight compartments assigned to the body system. The body portion of the comparten-

tat design Involves only those parts of the body that are relevant to the cerebral system, i.e.,

interact grossly with the latter. Accordingly, these parts Include mainly the heart and the respira-

tory systems.

The model also accounts for the Influence of the environment surrounding the body, e.g.,

atmospheric pressure, pressure al high and low altitudes, high underwater pressure, vacuum and

excessive gravity acceleration, such as encountered in flight maneuvers. It also takes Into con-

sideration differences in elevation between compartments. This means that it takes Into account

hydrostatic pressuro.

Exciatlons of the model are Introduced through changes in Inhale/exhale rates and environ-

mental pressure changes exerted on the abdominal. Extreme Intervention, such as resuscitation

ando clogging in the heart system, can be introduced via changes in the appropriate compaft-

mental conductances and compliances.
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The diagrammatic layout of the conpartmens Is such as to assist a medical clinician in the

Interpretation of the model Image of the human body, as when examining an X-ray plate. The

model will guide clinicais by predicting the brain-body perfusion responses to various excitation,

thus enhancing the physiological understanding, ault finding and consequent management in

deviant cases of this complex system.

2. MODEL TOPOLOGY

The cerebral section of the model is based on the works of Karni at al. (1987) and Sorek at.

al. (1987). and is conprised of the following compartments (Fig. 1):

Arterial Cranium (Ac ) - Consists of four supply vessels through the right and left internal

carotid and vertebral arteries, with arterlolar branches.

Capillaries (C) - Represents the suit of brain capillaries, chorold plexus and arteriolar/venous

capillaries.

Venous Cranium (Vc) - This is a lake' of blood confined by thin walls immersed in the brain

mass. it contains a controlled mechanism to Influence quick and slow fluid movement in the brain

during stress. it comprises deep and superficial systems, normally freely anastomising.

Venous Sinuses (S) - These are encased in semi-rigid wafs to prevent collapse in all but

extreme conditions of compression.

The Cerebro-Spinal Fluid is contained In two compartments:

Ventricles (FIv) - The four ventricles are treated as a true compartment with its own Inflow

and outflow. Although, normally, the resistance to the latter is low (as the aqueduct of Sillus

depends on a pulsative drive to maintain its patency), in disease, high resistance and even oclu-

slon may occur and Isolate part of the ventrlcular system. In such cases, we introduce In the

model the extra ventricular and the spinal fluid as an additional compartment.

Extra Ventricular CSF + Spinal Fluid (FEV) - The cisterns sulci and spinal fluid compart-

ment maintains a free communication with the CSF extra ventricular and, to a lesser extent, with

the four main ventricles.

i
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Compartments representing the extra-cranial venous (systems!) circulation are:

Extra-thecal venous plexus (VET) - A by-pass of the systemic flow Included in the bony spi-

nal portion of the cranial-SpInal compartment. Normally, this compartment is much less Involved

in the circulation to the cerebral system. However, In special cases it communicates directly with

the ventricles through the spinal and extra ventricular fluid. Therefore, we include it to accommo-

date abnormal situations.

Brain Tissue (B) - This compartment is placed diagrammatically as a central one, emphasiz-

ing its vulnerability, especially due to Its location between the venous compartments. All pres-

sures acting on B must be In such balance as to preserve the tissue physically, yet allow and pro-

mote optimal macro and micro circulation of fluid transporting metabolites.

The body section of the model is comprised of the following compartments:

Respiratory System (R) - This compartment is activated by the Inhale/exhale flux. Its

volume deforms through interaction with the heart system, abdominal, superior vena cava and

body's arteries.

Abdominal (BD ) - This compartment is subject to volume changes initiated by the environ-

ment pressure, inferior vena cave and the respiratory system.

The heart system circulation receives an input perfusion from the superior vena cava and a

feedback input from the Inferior vena cava. The Input flux is injected to the Right Ventricle (Rv)

which mutually interacts, by volume deformation, with the respiratory system, and by flow with the

Pulmonary (P). The pulmonary communicates by mutual volume deformation with the respiratory

compartment and (by flow) with the Left Ventricle (Lv). The left ventricle exchanges volume

deformations with the respiratory systems and discharges flow to the body arteries.

Body Arteries (AB ) - This compartment receives its inflow from the left heart ventricle and

introduces the major Inflow to the cerebral arteries. It interacts, via volume deformation, with the

respiratory system, and discharges flow Into the superior and Interior vena cava compartments.

Superior Vena Cava (Vsc) - This compartment receives the outflow from the cerebral sys-

tem. It also receives Inflow from the Inferior vena cava and from body arteries and discharges t to



the rWt ventricle. Volume deformation interaction exists with the respiratory system.

Interior Vena Cava (VIC) - This comparlment enables flow between body arteries and supe-

rior vena cava. It interacts by volume delorrnations with the abdominal, thus implicitly obtaining

Information from the environment which is then transmitted as back flow to the right ventricle.

Next we describe the resistances Rij (,R i ) and compliances Cij (LCji), ascribed to the

various compartments. Here, subscript ij in ( )j denotes the mutual boundary of compartments

i andj.

RAcAs Carotid Body resistance that regulates and controls the inflow from the body to the

cerebral arteries. The control is governed by the flux, QA, to the cerebral system.

PAcB Compliance between the brain tissue and cranial arteries compartments.

CAcFv Compliance that attenuates the arterial pulse transmitted by large vessels traversing

the basal, cisternal, sulcal spaces.

RAc C  The sum of the cranial arteries, capillary and choroid plexus resistances. The resis-

tance associated with the capillary is auto-regulatory control. This control between

the arteriolar and capillary vessels, attenuates the systole artery pulse.

RCVc Resistance of the AreriolarNenous capillary, accounting for the pressure drop

observed between them.

RCB Resistance of the Blood-Brain barrier (between the capillary and the brain tissue).

RCF, Endothelial resistance of the Blood-CSF barrier. It describes the chomid plexus and

ependynial secretion.

CCF, ,  Compliance manifesting the arterial pulse transmitted to the ventricle CSF by the

choroid plexus and the extra-cellular fluid.

RVcB Resistance representing the Blood-Brain barrier (involved in cerebral oedema).

RVcS A resistance comprised of two gates. First, the outlet from the deep venous circula-

tion into the straight sinus via the great cerebral vein of Galen. According to Le Gros
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Clark, an auto-regulatory control may be associated with this outflow.

The second component is the superior cortical veinous outflow into the sagittal sinus.

An observable pressure drop exists across this resistance under normal conditions.

RFavB Ependumal resistance of the CSF-Braln barrier.

CBFWv Multifrequency pulsed compliance, transmitted rhythmically by the brain to the ventri-

cle for axial drive of CSF.

RFvF" Resistance that exists only in the case of strong stenosis, between the ventricles and

the extra ventricular compartments.

RFrS Resistance manifesting villous tufts secretion into the venous sinus.

CSFrv A low Compliance across the semi-rigid sinus walls.

RFvVWc Resistance that manifests the slow secretion area around the spinal root sleeves.

CFEV Compliance between the Intradural spinal fluid and the systemic venous flux, across

the dura and the extra-thecal venous plexus. This mediates postural, respiratory,

abdominal and other body fluctuations, while setting up the intra cranial pressure

level.

RVITVsc Resistance to secondary flow communication between the extra-thecal venous

plexus and the superior vena cava.

RVscAB Resistance to inflow from body arteries.

CVscR Compliance created by the respiratory venous flux. This compliance is controlled by

the involuntary/voluntary variations in the respiratory rhythms.

RVscR v  Resistance between the superior vena cava and the heart system via the right ventri-

cle

RVc V~c Back flow resistance into the superior vena cava from the inferior one.

CRR, CP, CM,

These are the compliances between the respiratory and the heart system, comprised
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of the right ventricle, pulmonary circulation and the left ventricle, respectively.

CRA, Compliance of the respiratory and body arteries.

CpBB Compliance between the respiratory and the abdominal. It transmits the environmen-

tal effects to the abdominal.

RRVP Inflow resistance from the right ventricle to the pulmonary section.

RpL, Circulatory resistance from the pulmonary to the the right ventricle.

RLVA. Resistance to flow discharged from the left ventricle (leaving the heart system) Into

the body arteries.

RAE VjC Back flow resistance, from the body arteries into the Interior vena cava, to become a

flow feedback to the heart system.

CBDVj c  Compliance between the abdominal and the interior vena cava, transmitting the

environmental effect to the abdominal.

CBDA Compliance due to direct communication between the surrounding environment and

the abdominal.

Next, we write the perfusion equations for the entire cerebral-body compartmental setup.

3. FLOW EQUATIONS

Let us consider a single incompressible fluid phase that approximately represents all the

relevant fluids In the brain-body system.

In writing the fluid flow, or balance,equations we consider mass and momentum balances

for each compartment of the cerebral-body compartment system.

The model described here accounts for an Infinite environmental (e.g., the surrounding

atmosphere, or an experimental setup testing the influence of being subjected to several g's).

Essentially, each balance equation states that the temporal rate of inv.rease of either the fluid

mass, or its momentum in a compartment, is equal to the amount of net influx of that quantity

1-
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through the compartmenirs boundaries plus the external sources within the conpart ment. For a

constant density fluid, the mass balance reduces to a volume balance.

The fluid's volume balance equation In compatnent n takes the form

dV.

, ,i

where V, (t) denotes the volume of fluid in compartment n at time t (equal to the

compartment's volume), Q. Is the source associated with compartment n, and q, denotes the

flux flowing out of compartment n, through the boundary of the conpartment, to its adjacent i

compartment. This non rigidity of the compartment's boundaries (wwalls) is expressed by a com-

pliance factor, Cnj, defined by

d (pj) (2)

where Pnj -Pa -Pj denotes the pressure difference between compartments n and j, on both

sides of their common wall.

For low Reynolds number flow, the momentum balance of a fluid moving through a capillary

tube can be shown to reduce to an equation that expresses linear proportionality between flux and
driving force. The latter Is corposed of a pressure gradient and a gravity term. Here we assume

that a similar expression governs the flux between adjacent compartments. Hence

q,. = Z,j (pm + yH ) (zh)I (3)

where (zh) I . (m z I j h I J. Zm Is the conductance associated with the flow wall between

compartments n and i. H,. (-_H -H i ) is the altitude difference between compartments n and

I, 71s the fluid's specific weight, h ( = + HIm ) denotes the piezometric head difference
1

between compartments n and i and z (= J) Is called the hydraulic conductivity factor

between compartments n and i.

Upon substituting (2) and (3) into (1), we obtain

II
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I (zh) I.i + EPP,) Iv . 4

wo q(a-!- (p5 -p.,) = P. -.bj) denotes the temporal rate of Increase i the difference In

p*resur between coMpatmerts n and 11s; adjcent one. j.

Under certain abnormal conditbns, a number of compwtmenis become acte. These are
the extra ventricular and spinal flU (FzV) and extra-thecal venous plexus (VET). in the
Mahmaia Model. thi fad Is expressed by Introducing a parameter X.,. which can be set

either to Xm = 0 for normal conditions, or to Xm = 1 for abnormal ones.

In view of (4), we write the folowing Compartmental fluid balance equations:

Ac: 0=(h (5.1)IC (C)AB (~bI,,,

C: O=-(zh)LAC +(zh)Ic + (zh)Icvc +(zh)ICpw +(CiP)ICF. (5.2)

VC: 0=-(zh)IcvC-(zh)IBv+(zh)vS+(Cb)IvB (5.3)

B: 0=(hIB(hIB(hIV+C)B,(A)j,(A)B, (5.4)

Frv: 0= -(zh )lIcp,,+(zhz) IFwB+(Pzh) IF,CP) I FryE (CP) IFrc (5.6)

Fzv: O=(zh)Ipm,s +(Xzh)Ip~vc -QtzJ)lprygy+(CA6)IpS +

(5.7)

VET: 0=(Zh ) Iv,,v. + XQC ) Iv ,(.)

VsC: O=-(zh ) I s.-(zh ) Ivv,., - zh)AV+(zh)IVR...

+(zhIv~v~~hzh)IVv +(c~IvR(5.9)

VIC: 0 =-(zh) sV,+ (zh) I + (Cp6) Iv,, (5.10)
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AB: 0=( h)IA,,,-(zh)I,,Ao+(zh)IAvw + ()OIA.V,+ (C)IAR (5.11)

Rv: 0 =-(zh)lv =R, + (Z/)IR~P + (¢.)Ii , R (5.12)

P: o=-(zh)IRp+(zh)Ipz +(C)IR (5.13)

Lv: 0=-(zh)Ip4+(zh)lA,+(C)IR (5.14)

R: QR =(AM )lRv& +(CJ5 )lR+(C) )lRP+(CP))hR., + (CP)lsnB+(CA6)lIR, ss

BD: o=(Cp)IB-R +(Cb)IBv,+(C)l)BA . (5.6)

Since the environment is of infinite extent, we can write the relations

QR= cBA PBD (6.1)

PA = 0. (6.2)

We assume a Monro-Kelile postulate according to which the (almost) rigidity of the skull dic-

tates that

I Qqdt = JQA dt (7)

where T is the time period.

A stenosis in the passage between the F v and F1  compartments, initiates a build-up of

the compliance between the F1 V and AC compartments. This, In return, Indicates that

-Px,,P, = XFII,AOX.. (8)

Under normal conditions, with free communication between Fwv and F-V compartments

(Rp,,&,w) O), both the main ventricle and the extra ventricular will merge Into one compart-

ment (the F compartment), resulk in

hp. = h,, a hp with X =0. (9)

Note that in (9) we have assumed HrrI =Hp1 nmHF, because only minor differences exist

eI



between their values.

Lot us now contin. all comatrmertal balance equations ito a global matrix form. For the

normal behavior (L~e. An = 0). andl In view of (S) and (9), we oblain

+Z ci Q.X (10)

where

A ALf
cit dt - -f=

= V, .hc hE .hvc,,hF .hs .hv ,hv,,h.hIh,,hp]T  (11

0
0
0
0
0
0

CVIIR(CB-CB.D R

CV.

- - [CAI,3 (CB.R -CR + C.R (CE.-CB.R)I

CRR
-= (CB.-C 58. )Qa

=~- (CB.-C 5 .R)Q 5

C

(CB.-~j0A
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C, CsR + CBV, + CBA 1.5)

CR "CRv, (11.6)

_, = CBD. CR -CLR (11.7)

Equation (10) Is to be solved for the unknown & vector, subject to an Initial condition of the

form

A(t.O)=1o (12)

Upon solving (10). together with (12), we obtain the solution for the temporal rates of change

in plezometric head, hB, and hR, In the forms

AB. = I lCB [ ? -CR )QR +(CR CBoA.+CBR C 4)iA, +CR CBov, V,c+
(13)

+CERCRV.,J V,+CBRCRR ,R+CB.R CRP /P+CBCRL.,4,, I

4R =I [(CBD-CB R )QI+(CB0 CRA,+CB RC CB.DA)A.+CB.RCB v.hv.+
(14)

CBCRV AV +CB CPJR,+CB CRpjhp + CB.CRLy4L, I •

The compartmental balance equation, written in the global compact form (10). involves con-

ductivitles and compliances expressed by the matrices z and C. respectively. In order to solve

for the plezometric head vector, h .we need to know the z and C values. We shall, next, discuss

an inverse method for esimating these parameters.

4. PARAMETER ESTIMATION

To predict the pressure and flux response of the model to external changes, the values of

the parameters C andz must be known. In order to estimate them, we need measured values of

pressure In the various compartmrens at a sufficien number of points in time. Typical phasic

I|



r
W-O15-

pressures are depicted in Figs. 2-11.

In the present work, we assume that all conductivities and compliances have the form of a

time step function I.e.. they change from one constant value to another constant value, due to

abnormal situations such as disease. Because C and z are constant during long time Intervals,

and h (t) Is assumed cyclic, by taking a temporal average of (10), i.e., integration over a period of

time divided by the period, we obtain

zjh" =.Q* (15)

where h" and Q' denote mean values of the piezometric head and of the source term, respec-

tively. Since h.* and 0 are known averaged values, in order to solve for z values, we rewrite

(15) in the form

/&zV = 2* (16)

where (-) denotes the head difference between two communicating compartments.

In the cerebral portion of the model, we face ten conductivities against six balance equa-

tions. However, by virtue of the Monro-Kelie doct,ine which assumes absolute rigidity of the cra-

nial vault, actually only five equations of the six are independent. Thus for this redundancy, five

additional conditions are needed. One of them is the mean Influx to the CSF (F) compartment

Q- = 0.3ml/m.n. (Cutalar, 1968). Two more conditions are stipulated by physiological data.

These conditions determine the scalar coefficients (Sorek t al. 1987) a and 03 defined as

ZVcS
=(a>) (17)ZFB

and

-CB (0 < (18)

Zp 3l

where a (- 10000) Indicates the ratio of the vein-venous sinous to the cerebrospinal fluid-brain

barrier, and 03( = 10 - ) Is the ratio of the blood-brain barrier to the cerebrospinal fluid-brain bar-

rier.
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The mean arterial Inux, QA, which according to (3) equals the mean venous sinous efflux.

Is given by

Q, = Q; a Q" = 750m.mlin.

Because Q, Q; and Q; are a-priori known, and the mean head values

h cC . hlp, h;,A, and hSVc are also known, the following conductivitles are immediately

obtained.

/ZA EA c QC (19.1)

F ZSVSC = (19.2)
lLCF h;V11 ,

Also, for the given configuration of the heart system (Fig. 1), knowing the mean flux through

any of the conductances, e.g. Qj = 5900m1./min through the boundary between compart-

merits Lv andAB. will yield

Q; Q;
ZLvA hvA pLV =hpL (20.1)

Qi Qi
ZRvP : 7 2 V~R, -= . (20.2)

We assume that the mean Influx to the inferior vena cava compartment is a fraction, 8

(0 < 8 S 1 ), of the efflux Q_ from the left heart ventricle. Therefore, we obtain

zvcvsc = hcv(20.3)

ZAVic - . (20.4)
hA VIc
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~~(1-s)Qb.Q"
ZA.V= hi.vsc (20.5)

Hence, in view of (17) to (20), equation (16) is constructed of the folowing matrix and vec-

tors

h - Ph *C 0 0 h;vc

Phi h v 0 0 (21.1)

= h;B o h;s o
c;oS -h vc 0 -h;v

zV = [ZFB, ZCVc, ZF', ZBVc I T  
(21.2)

_Q" = [0, Q* _Q;., Q;' 01T (21.3)

Upon solving the inverse problem for the conductivities, we move to the estimation of the

compliances.

Given information of the simultaneous pulse wave recordings, p (t), and,# (t), in the different

compartments and at various times tk ,k = 1,2,...,K, equation (10) (or (5) and (6)) now yields a

set of k relations for the compliances, for times t k

h
C v =.Rk (22)

dwhere : )-- (-),



hcp

h~w 8 .(23.1

JLA.R

~V....(CB .CCF CVCB, CSF CBF CVs,,R CVW,,B.CRvR.

CPR, CJvR, CABR, CBDR ]T(23.2)



(zh) IA.A, - (zhk)Icc

(zhk)I~cc - (zhk) I c - (zhh) I cv, - (zhk) I C

(Zh)IC~V+(Zhk)IBVc,-Zhk IvCF

(Zhk) I VS +(Zh*) Is FS (zhk)!Isy.

(Zhk)Iv,,s-(zhk)IFB-(zhh) Isv,.+(zhk) KcczA R(Zh")IB(hk) cvc

Rk= ~(zh ~sv,,,+ (zh *) I cs (Zh k)IA. VS, -(zhk) I VcRv (23.3)

(zh *) I A. v (zhk) I vv,,

(Zhk) IvV? -(zh k) IRjp

(zh k)I Rvp -(zhA)I pz

-(zhk) I A Vw-(zh k) IAB Vac -(zhk) IA.Ac+ (Zhk) I LA

L ~-QR' + (zh k )I AB Vw -(zh) k cv,

Note that the z values in (23.3) are already known.

By the Gauss-Markov theorem, the d values are derived as an assortment of the set of

informations through all K time observations (Sorek et al. 1987b), namely

d = I;- =B(4

where,

E2.

(25.1)

fjK
- K-13

B f ?',R2 .. *K K (25.2)
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Since the h*submatrices of x are main diagonalized, we can evaluate the C values

directly.

I h.cB[(zhk)IAEAC - (Zhk) AcC]

CAE = k= (26.1)

k=1

1 hCF[(hkIACC-(zh)I cB -(zh)I -vC (zh)IF

ccF = - K 4k) (26.2)

k =1

VC h B[(zh)I +(zh)IBVc-(zh)vcs]
-V" =1 K (26.3)

A =1

SF hFzh V+ (zhk) IFs -(zhk)s 3

CSF ==1K 4* 2(26.4)

A =1

E hB (h)vs~zAI FB -(zhA I Is,+zAC(zhA k I CB (Zh k) I CVC
CEF =A=1K

k =1

(26.5)

K 4
I hvcR[(zh') Isvc+(zhk)lv v,,5 +(zhk) IA. vaczh') I 1/,,?,]

CVscR -= K (4kR2(26.6)

k =1
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K
Cv = [(zh) (26.7)

k=1

K.
I 4RkvR[(zhk)IV.,R, - (Zh k) I RvPjk=1

CRvR = K (26.8)I (h;1,R)2
k=l

k=l

K (26.9)

M (4p'R)
2

k=1

K h4LR[(zh)I pZ, - (zhk)ILvA

K (26.10)

1 (Qht R)2
k=1

K 
kY IZA. R [(zh ) tLA - (z h ') IA.A-(Zhk) IAvsC-(zhk) IA. VfC]

A8R K (26.11)K ,) 2

A=1

K
, U, [-QA + (zh') I ,A1v - (zhk) Iv "Vc]

= k (kaD )2 (26.12)

k-1

Thus, we have completed writing the numerical algorithms for estimating the z and C

values. The mean and temporal values of the fluxes, pressure and pressure rates are derived

from phasic changes as depicted in Figs. 2-11.

Note that for the body system, the compartmental pressure and temporal rate of pressure

change ride on the appropriate respiratory wave. However, for the cerebral system, this effect Is

IJ
, Il mm m 1a m m l 8 m m im m n m
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attenuated.

We assume a respiratory pressure wave of the form

==10 sin -t (27)

where Waj = -x Is the lnspirationlrespiration frequency, and Ta ( 3.4sec.) Is taken as the
Ta

respiratory cycle time.

We use the following attitude values:

HB, 110cm. Hv c - 140 cm. HVc, 163cm.

Ha - 135 cm. Hvw" - 126 cm. H B - 163 cm.

Ha, -130 cm. HA, , 116 cm. H F - 163 cm.

Hp - 130 cm. HAc, - 160cm. Hs 163cm.

HL - 130cm. Hc -163cm.

corresponding to a standing position. Also, we choose the following values for pressure and rates

of pressure changes:

pC = 30mm.Hg. ;Pc= 0

Ps = 2mm.Hg. A ., =0

pv = 5mm.Hg. ; Pv = 0.

This concludes the calibration scheme for the brain-body compartmental model, with con-

ductivitles and compliances that remain constant during long time Intervals.

S. PRESSURE WAVES

Once the linear model described by (10) has been calibrated, it is possible to obtain solu-

tions for the pressure waves In all brain-body compartments. In Incremental form, the solution of

the differential matrix equation (10) for h is

+M) = exp(-[h(,__Z-o(,)] + -Q(t ) . (28)

ttI
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Hera, At( ingm+l-,t ) denotes a time dIfference between the frontier time level, t"' +l,

andlthebai me, t'. The matrix t reas

At C 1z (29)

The rational expansion of exp(-r ), leads to the following formula

exp(- ) --- + (0:5 09 1) (30)

in which Is the unit matrix. Substituting (29) and (30) Into (28), yields

. (, , )1 _(1--)ft Z,)-_- , + - (') . (31)

The coefficent 0 controls the type of numerical solution scheme evolving in time. When

0 = 0. we have an explicit scheme 0 = 1, an implicit scheme, and 0 < 0 < 1 is the mixed

scheme case.

Thus, with the choice of 0, the head waves In the various compartments are calculated

according to (10). In view of (3) and (31). we can also evaluate the compartmental pressures

E(,+ht) = {(=+9T )l-(1-eh J (,)-_-lO (,) +Z-,2(,)-H)Y (32)

This completes the modelling of the brain-body perfusion pressure, as excited by environ-

mental pressure and due to inspirationexpiration flux.

6. CONCLUSION

A compartmental model for perfusion pressure Interplay between the cerebral, respiratory

and heart systems is presented. The perfusion pressure response Is initiated by compartments

alitude. environmental pressure and inspiration'expiraton flux.

Flow between compartments Is governed by compartmental step function related condctivi-

ties and compliances that take the fomw of time sep functions.

The developed model can be used to guide the naurosurgeon in the herpretation of possi-

ble consecuences of management methods appled to abnormal cases. Following are some

r -- . ...... . ..........
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examples of management maneuvers that can be Interpreted by numerical experiments of the

model.

(a) Correction of a faul I recognizable and accessible, e.g., tumours, blockage of flow chan-

nels. This is the Ideal case.

(b) Offsetting of destructive tensions that, usually, would be short term amending. e.g., reducing

excess pressure usually done by shunting the CSF volume.

(c) Correcting mechanisms that fall to confine or maintain the system in optimal compliance

against repeated stress in the long time, e.g., introducing a gas bubble in a sac into the large

hydrocephalic ventricle in order to hold down the pressure peaks and create better

Pressure-Volume-Time relationship.

In practice, the management of (b) is on the CSF bulk, where as for (c) t also involves the

blood volume as an Indirect means of promoting optimum flux.

The model can provide information for fault-finding, target identification and monitoring the

results of rational management.
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A COMPARTMENTAL BRAIN MODEL FOR CHEMICAL TRANSPORT
AND CO2 CONTROLLED BLOOD FLOW

Shaul Sorek1 , Jacob Bea, Moshe Feinsod3

ABSTRACT
A compartmental transport model is developed, capable of predicting the evolution of CO2 ,

HCO and W in the cerebrovascular system. In the model, the transport of these components Is

simulated at a subset of three compartments: CSF, Capillary-Chorold Plexus and Brain Tissue,

belonging to a seven compartmental assembly representing the entire brain. The remaining ones

are: Artery, Vein, Venous Sinous and Jugular Bub.

The model accounts for advection associated with non steady perfusion fluxes across semi-

pervious boundaries. Pressures, associated with perfusion, are solved separately in the seven

compartment model. The three compartment transport model also takes into account changes in

compartmental volume, due to displacement of its boundaries, diffusion through boundaries and

rate of generation of substances by chemical reactions. A first order reaction rate is assumed in

the Brain Tissue compartment. A parameter estimation method is then developed to assess

boundary diffusivities from time averaged observed values of perfusion pressure, tension of

carbon dioxide, pH values and concentration of free hydrogen and bicarbonate ions. An equation

of state for the arteries to capiflaries influx, as a function of CO2 tension in the CSF, Is then

suggested as a blood flow controller for CO2 excitations. Upon solving an coupled mass balance

equations, and for a pre-evaluated perfusion pressures in the artery and capillary compartments,

one can estimate the change in arteries to capillaries conductance at every time step.

Ke rds: Compartmental system, non steady pedusion fluxes, compliance, conductance,

diffusion, advection, chemical reactions, molecular carbon dioxide, bicarbonate ion, hydrogen ion,

parameter estimation.
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INTRODUCTION

Experkerts (Greenberg at al. 1978) show that the flow of blood from the arteries to the

capillanes within the cerebrovascular system. Is controlled by changes in the concentration of

carbon dioxide (CO2) within the brain tissue. In order to Investigate changes in this flow, in

response to changes in C02 concentration, a model that simulates chemical transport and blood

flow in the brain system, was constructed. Following earlier works by the authors (Kami et al.

1987, Sorek at al. 1988a-1988c), a rulticompartmental model was selected for this purpose. In

such a model, each part of the brain, Identified by a certain function that it fulfills, is simulated as a

compartment characterized by unique values of time dependent variables, such as pressure and

concentration of considered chemical components. Adjacent omnipartments interact with each

other, enabling flow of fluids (here blood) and chemicals (e.g. C02 dissolved in the blood) to be

transported across lntercompartmental boundaries. Mechanisms of species transport include

perfusion with the blood and molecular diffusion. In addition, various chemical reactions Involving

C02, HCO and HW take place, affecting their concentration. A model of this kind is often referred

to as a (uffy mixed luapedparameter model

Following Sorek et al. (1988a) a model composed of seven compartments was constructed

to simulate the following brain parts: Artery (A). Capillary and Choroid Plexus (C), Venous (V),

Venous Sinus (S), Jugular Bulb (J), Cerebrovascular Fluid (F) and Brain Tissue (B).

In the model Investigated here, it is assumed that a single (averaged) incompressible fluid

flows through the various compartments that simulate the cerebral system. The mathematical

model is comprised of mass and momentum balance equations for the fluid and mass balance

equations for each of the chemical substances influencing the C0 2-transport.

THE LUMPED PARAMETER FLOW MODEL

Figure 1 shows three adjacent compartments; (i),U) and (n), separated by common

boundaries which permit fluid to leak through them, from (i) Into (n) and !rom (n) into U). They

also allow components dissolved in the fluid to be transported across the boundaries. The solute

is transported through any boundary by two mechanisms: advection with the fluid, commonly
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referred to as transport by pedusion, and molecular diffusion. The boundary Itself acts as a semi-

pervious membrane which can be displaced in response to pressure changes in the adjacent

compartments. This displacement produces changes In the volume of each compartment. We

use the term compfiance to describe the relation between the change in a compartrments volume

to the change In the pressure difference across N.

For a fluid of constant density, p, the mass balance for the (n )th compartment is expressed

by

10, Jao dV n
Zqn - Z qj +Q(n)- dt (1)
i-1 j-1

where I(,) and J(,) denote the nunber of compartments from which flow enters the (n)th

compartment, and leaves it, respectively, q and qq denote the fluxes from the (i)th

compartment into the (n)th one, and from the (n)th one to the (i)th one, respectivey, Q ()

denotes the fluid sources in the (n )th compartment, and V, denotes the volume of compartment

(n). The compartmental volume is affected by the rigidity of the displaced boundary in response

to changes in the pressure difference p,,n (--p, -p, ) across the mutual boundary between

compartments (m) and (n).

Within the cerebral system, differences in elevation, H, are small. Hence, we may assume

that between two compartments, m and n , we have

P. n -(P,- -P.) 3 p(H -H-) (2)

whereg denotes the gravity acceleration.

The flux through a semi-pervious boundary between two compartments is proportional to the

piezometric ( = hydraulic) head difference between them. However, in view of (2), we assume

proportionality to the pressure difference, i.e.

qiX = Aft Pin (3)

where Zi1, is called the conductance of the boundary between the (i )th and (n )th compartments.

The rate of change in V, appearing in (1) Is expressed by
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dV,, Me. dIP3 dP., At- dP
- = E. . (4.1)

where C,. denotes the value of the compliance of the (n )th compaflment due to the

displacement of its boundary with the (m)th one, and M(.) is the number of boundaries of

compartment (n) that are associated with a compliance.

The compliance, C,, is defined by

dIp. .m - d,,. "(4.2)

In view of (3) and (4), we can now rewrite (1) in the form

16.) J4.) mi.) dP..

Q E) = -Zin. + E Z pj + E C. dt (5)
i-I j-1 m-1

In general, the various Z 's and C.,, 's are assumed constant. In this paper (as in earlier

papers by the authors (Sorek et al. 1988a-1988c), these coefficients are allowed to vary as

functions of time e.g., in the form of a step function in time, say, in response to illness. As will be

shown in the section below, the conductance between the arteries and the capillaries, depends on

the pressure differences, PAC.

Equation (5) constitutes a set of n equations, one for each of the n compartments, in the n

unknown pressures, P,.

TRANSPORT OF CHEMICAL COMPONENTS

Our next objective is to formulate the mass balance equation for the chemical components

transported through the compartmental system.

We make the assumption that the concentrations of the various chemical components and

the various coefficients that govern transport and chemical reactions are independent of the

pressure. This makes the problem of pressure variations in the compartments independent of the

problem of concentration distribution. Accordingly, the former problem can be solved first, using

the resulting pressures as input to the latter one. In fact, the authors have already addressed the
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problem of pressure distrbution In earlier papers (Sorek at al. (1988ab)).

A detaled literature survey on the effect of changes In arterial carbon dioxide tension on

cerebral blood flow Is documented in Greenberg @t al. (1978). In that work, a mathematical model

is developed that relates the cerebral blood flow control to changes of CO2 tension in the arteries

(Pa CO2). Greenberg's model of the controlled perfusion in the brain system is composed of three

compartments: capillaries (blood), cerebral extracelular fluid and cerebral intracellular fluid. His

model Is based on the assumption of rigid compartmental waft and constant perfusions blood

pressure.

in what follows, we present a modification and an extension of Greenberg's model. The

extraAntro cellular fluid compartments are lumped into one brain tissue compartment. We relax

the assumption of rigid walls by introducing compliances and by solving the perfusion pressure for

a nonsteady system.

The general layout, composed of a seven-compartment system, is shown in Figure 2. This

general system was developed by Sorek et al. (1988a) to evaluate changes in the cerebral

perfusion pressure. Figure 3 shows the transport as conceived by Davson (1967) and Greenberg

et al. (1978). Our aim is to include in the model the regulation of arterial to capillary conductance

as a function of CO2 , pressure associated with perfusion flux and changes in compartment volume

related to boundary compliance.

Following the discussion of Greenberg et el. (1978), we focus our attention on the hydration

reaction that takes place in the physiologic fluid circulating through the cerebrovascular system

C02 + H20 H + HCO". (6)

This chemical reaction influences the transport of dissolved CO2 and will thus be considered

in the model. The coefficients if and icR are the forward and reverse rate constants,

respectively.

In view of (6), the three chemical species that are involved In controlling the blood flow are:

molecular carbon dioxide (CO 2), bicarbonate ion (HCOj) and the hydrogen ion (H*).
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In developing the transport equations, we write a mass balance equation for each of these

substances, uslng the notation:I = 1 for CO, l = 2 for HCO- andI =3 for W-.

For the mixed cell Idealization considered here, with no external sources or sinks of the

components, the mass balance for the I substance in compartment n, is expressed by

d .)J,. K,.,(c., ) = ci/(.) qi., -c, ka~ £ R (7)

i Ij-1 k-j

where c' is the concentration i.e., mass of species per unit volume of compartment n, R.1

denotes the rate of production of the Ith substance by chemical reaction in the nth compartment.

c,(,) is the concentration of species I in cell i entering cen n, D1. is the flux by diffusion of the

substance I from compartment k into cell n through their common boundary (a total of K(.) such

boundaries). The perfuslon fluxes, qj, and qn, are related to the pressure difference by (3). As

the pressure fluctuates, these advective fluxes, that carry solutes, also fluctuate in magnitude. In

most existing models, these fluxes are assumed constant. For example, the flux from the arteries

to the capillaries, which affects the corresponding solute transport, varies in the range :95% (for an

average of 750 mI/min; (Sorek et al. 1988b)). The diffusive flux is expresed by

Dj =Din (c .j) (8)

where "Dkn is a coefficient that is related to the diffusivity and "thickness" of the boundary, thus

regarded as boundary diffusivity. By expanding the first term of (7) and in view of (4). we obtain

d i C... d"" I c' ,+V dct (Cn ) M-1 -t- + - .d (9)

By integrating (4.2), we use the symbol V,, for

?n.r+ (V"., + CnP.n) (10)

where

and -- , c.. A reeec amt

and .are reerene values given alhe sam time (e g., at t=0).
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If we now substitute (3), (8)-(11) Into (7) we obtain

dc zn / ox +

(12)ddtlK.,
c . Izjp,.j + E c.. d + Dk. (cl. c .) + R.•

1j1 m-1 J -1

Then, by multiplying (5) by c.j, and subtracting from (12), we obtain

Ie~ K( cI - ' ) A.)
V,, t- = 'i zi (C.c)Pi. + F D (c(,.)-c,) -c,,Q(.)+R,. (13)

W i=i -1(

Henry's law states that the concentration of a dissolved gas (e.g. C0 2) in a fluid is related to

its solubility, a / , by

C! = o!/ 7 (14)

where o? (constant for all cells) is in moles/liter/mmHg and id is partial pressure of the gas in cell

n. In writing (14), we have overlooked the difference between the volume of a cell and the

volume of fluid in it, assuming that the volume of (solid) tissue In the cell is negligible.

Thus, in view of (14), the mass balance equation (13) for the dissolved gas, becomes

dnt j., k I
i-1 k-1

where nl, - ,. Note that (15) does not include any efflux terms.

In view of the transport processes depicted in Figure 2 and (15), we write the explicit forms

of the mass balance equations for dissolved CO 2 in the C, F and B compartments

Capillary and Choroid Plexus

C: C (16.1)

VC = ?C + VCF + CC, PCF (16.2)

where (VcF + CCF PCF) I c 5% (Sorek et al. 1988a).
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F: VF - = (ZCF Pp + !D I) 7XF + DB'F p +Rpt+ (17.1)

VF Ti + V PC + V F + VrFS + CC,,PFC + CFBPFB + CFSPFS (17.2)

where (IPC + VIp8 + Vf'S + CcFP.C + CFBPFB + CYsPPS)l/F - 1.50/

Brain Tissue

B: VB "4 =(ZcB-PCB + V BC) rr3B +(ZFBPFB + D BF)jzB +R /a (18.1)

V8 = +VIv +Vp + CBVPBV +CFBPBF (182)

where (VIBv + Vi' + CBvPRv + CFBPBF)/ B = 0.1 %. We note the trend in the effect of the

compliances on the CO 2 concentration changes.

With (15) as a typical balance equation for gas such as CO2 in a compartment, expressed in

terms of the partial gas pressure x, we write seven balance equations for the seven

compartments. Compartment A serves as a compartment with known fluid pressure and partial

gas pressure that represent boundary conditions. This leaves only six onTartments and six C02

balance equations. By examining Figure 2. we note that the three compartments, C, F and B,

contain no influx, excluding the flux from A into C. Hence, in view of (15), we may write a

subsystem of three balance equations for the C, F and B cells in terms of the variables 7-J , 7

and nA. This subset of equations is independent of what happens in the remaining three

compartments V. S and J. Actually, in order to decouple this subset of equations from the

remaining equations, we had to introduce one more simplifying assumption. This assumption

states that the advective C02 fluxes between the adjacent compartments from A to C, from C to V,

and from B to V, are much larger than the diffusion fluxes between the same compartments. In

each case, we may express this assumption by a Peclet number, P, = 6L ID, that expresses

the ratio between the advective and diffusive fluxes, where 0 is the mean fluid velocity crossing

Kd
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-45.

the appropriate boundary, D Is the coefficient of diffusion and L Is a characteristic distance

between the projection of compartment centers on the ine perpendicular to the common

boundary.

In the compartmental balance equations, the Peclet number is expressed In the form

P i = 1 
(19)

Hence, when P.,-- , the advective flux is dominant, while P,--O means the domination of the

diffusive flux. When 0 < Pl < -, we have to include both the advective and diffusive fluxes.

Our next objective is to write the balance equation for HCOj for the C, F and B

compartments. Here we have to take into account the ionic nature of this component. In addition

to diffusion across the boundary between adjacent cells, as driven by a concentration difference,

another diffusive flux is produced by the difference In electric potential across the boundary.

These differences in electrical potential result from the behavior of boundaries as semi-pervious

membranes which prevent certain ions from passing through them (Greenberg et al. 1978).

Because of the electrical charges, and because we deal with the diffusive flux of charged particles

(viz, the HCO- ion) the membrane itself becomes charged and affects the diffusive flux through it.

Nernst's equation describes the equihbrium potential created by the ion distributions across

the membrane.

The diffusion of an ion through a charged membrane as governed by the electrochemical

potential was formulated by Harris (Harris, 1960).

Typical measured values of the electrical potential across membranes for bicarbonate and

hydrogen ions (Messeter and Siesjo, 1971; Sorensen, 1971) do not agree with values as

calculated by the Nernst equation. This leads to the conclusion that the Nernst equation does not

describe the equilibrium in electro-chemical potentials across a membrane boundary in the

cerebral fluids, as produced by the concentrations of HCOj and H ions on both sides of such

boundary. Greenberg (1978) addresses this issue and suggests an additional diffusive term,

controfled by a coefficient of diffusion 'D".
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In what follows, we follow Greenberg's (1978) development, when applying the component

balance equation (13) to HCO5 in the C. F and B compartments.

Caoillary and Choroid Plexus

dctC: Pc -s- = Z.c(c - C3)PAC + V)Jc(cI-yjcc )

(20.1)

+ DC(c- ykc) +R2

where

IC = DBC + DBC

S= BC . ( IZ (20.2)

2 T

2
-'-E (20.3)y;C =  --" exp(- E

In these equations f is Faraday constant, Z is the valence of ion, R is gas constant, T is

absolute temperature and E,, is the maximum equilibrium potential according to the Nemst

equation

E,4. = 61.510og c (21)
C

where c' and c are concentrations on both sides of the membrane.

CSF

F: , d' =Zcp( -cj)PCF + D Q)kc(j -c) +

(22)

+ DiF(Ci - ydFc) + Rj

Here k ', 1C D 2F and yjF are similar in their expression in (20.2), (20.3).
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Brain Tissue

B: V8 - 8 =c(cc-cj)Pca + ZFB (c/ - CAPR +

(23)

+ VAC(yJCCI - CA) + VA2F(yjAc) - cA) + RI

Note that from (6), it follows that

R= - R 2 =- R 3  n =B,C,F (24)

provided that the R's are expressed in moles. Otherwise, an appropriate conversion must be

introduced (say, from moles to grams). Note that (24) constitutes two equations for each

compartment. The concentration of water is assumed constant so that it has no rate of

production.

In the case of the Hydrogen ion, we realize that a considerable quantity of the formed H*

becomes bound to various buffers (to hemoglobin in the blood). The bound portion of the total

amount does not contribute changes in pH which is a measure of the (non-bound) concentration

of H+ in the fluid. We define a buffer capacity, 0, of a homogeneous medium by the rise in total

hydrogen ion ooncenration,c 3t ,per unit rise in pH, i.e.

dc3'
= -- 

(25)
dpH

The definition of pH ( = - log c 3), together with (25) yields

dc 3  _ L_ dc3

dt - (In1O)C3 dt (26)

The integration of (25) for compartments n and i (assuming 0 to be constant within the

range encountered in the compartments) yields

ci3 h _ cnd = n(pHi - pH. ) - (B. - Baia (27)

where B. and B i are integration constants associated with compartments n and i, respectively.
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The discussion presented above on the diffusion of the bicarbonate ion across boundaries

between adjacent compartments is also applicable to the hydrogen ions.

In view of (12), (26) and (27), we write the balance equations for the -- ion in compartments

C, F and B.

Capillary and Choroid Plexus
dc 3 In 10 3

C: VC ccf--= - AC(PHAC-BcA)PAc+

(28.1)
3 3 3 3_3 3 3 )

BCB--Cc) + DG(c-SFcc) -RC)

where

BC exp (Em -- ) + D -3c(28.2)

B8 C D 3

D 3 (ED

DC exp (E -T) + D.3 (28.3)

Here pHij - pHi - pHi and Bij - Bi - Bj.

CSF

F: In 10 c? { ZCF(PpHCF -B ,c)Pc+ +

(29)

+ D3c(8,cc-cp) + D3F(c -. Fcj)-R,}

Here D.G. S), DF. and ,AF have expressions similar to those given in (28.2) and

(28.3).
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Brain Tissue

B: 1 de In 10 c { ZcB( pHcB - BBc)PCB + Z4B (pPHFB -BBF)PF +
dt B

(30)
+ DBG(8ACc - C -C

3 ) + AF(81FCP,-C-R3 }

The presence of the enzyme carbonic anhydrase in the red blood cells makes the

hydration/dehydration practically instantaneous. Consequently reaction (6) is always one of

equilibrium, described by the reaction constant 1.

On the other hand, in compartment B, the absence of carbonic anhydrase in the cerebral

extracellular fluid means that reaction is not one of equilibrium. Instead, it has a finite constant

rate. We assume a first order reaction in which the rate is proportional to the concentration.

Under conditions of non-equilibrium, the rate of production of C02 equals the difference between

the reverse and forward reaction rates. Therefore, in view of (6) and (14), we write for the B

compartment

B 'VB(OCRcC - ' a'2tA)(31

In compartments C and F, where the reaction is in equilibrium, we write

JC= c 2  (32)

Cl

Concentration of water (H20) is assumed constant, hence it is incorporated in the reaction

constant ic. By virtue of (14) and (32) we conclude that c3 =c 3 (&xl 1 ,c 2). Therefore, we can

replace (32) for compartments C and F, by the relation

d3 clxxl d + clic dxi (3
dt (c2)2  det +  _, dt

At this stage we have a model consisting of 18 unknown variables:

c. and R ;n =B,C,F; 1=1,2,3

for which we have 18 coupled equations:
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nine component balance equations, one for each component In each compartment.

two equations (33) for compartments C and F and equation (31) for compartment B, and

three times equations (24), one for each compartment.

In principle, a solution can be obtained.

We note that this set of coupled equations is non-linear. The coupling is through the rate of

production terms (R ).

In the above set of equations we encounter various coefficients, or parameters. One group

consists of coefficients such as Kcf, KR , f" . that are universal and assumed known. They are

independent of the particular model employed here. The second group consists of the

conductances Zj, compliances Ca and boundary diffusivities . The determination of the

coefficients Zj, and C,, was described in an earlier paper (Sorek et al. 1988a,c) and will be

considered here as already known.

In the following section, we shall consider the determination of the various boundary

diffusivities of the model.

ESTIMATING DIFFUSION COEFFICIENTS

In view of (16) to (18), we may write the CO 2 balance equations, in a matrix form

- + = ,x 1+R_'/c (34)+ d - _-

where

91 [X. 3t .Xj]T (35.1)

VC 
(35.2
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M(ACPAC + 1)W' + Dc -DRC+PPB+DCqA)

D= -(ZcFPcp + DA) (ZcpPcp+Dk+D -D I

-(ZcBPcg + !DBc) -(ZFPBFB+qDa') (ZcBPCB+ZPBPFB+DC+BF

(35.3)

I = [ZAcPAcXA, 0, OT (35.4)

= [RC1 ,R1,]RIT (35.5)

Similarly, in view of (20) to (23) we write the balance equations for the HCO 3 element

v_-- + =C= B2 +R2 (36)=dt - -

where,

£2 = [Cj, C , C ]T (37.1)

S(ZAcPAc+2yjC+v2yjC)22
02 -(ZcPcF+2yAC) 2ZF~p + yAF) 2.

-(ZcaPcn+c, ) -(ZFBPB+D&AFT) (ZcBPcB+ZFBPFBeDAC+21,)

(37.2)

2 = [ZAc pAC C2 , 0, O]T (37.3)

R2 = [IRj JR]r (37.4)

Obviously the solution of the model requires appropriate initial condition. Examination of the

matrix forms (35.3) and (37.2) Indicates that they are non-singular, which means that a solution is

possible. This is due to the fact that the model involves both diffusion and perfusion.

The C02 concentration (lIke those of HCOj and H4 ) continuously undergoes changes.

These changes are introduced both by the person's behavior and by various environmental
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factors, e.g., temperature. On the other hand, various control mechanisms exist In the brain that

continuously act to restore some average or normal concentration.

As the CO2 mass (as well as that of HCO- and H) within each compartment vares, we may

identify points in time, say, t I and t2 (>t 1 ), at which this mass is the same. This means that over

that time Interval (regardless of the sequence of changes inbetween those points), t 2 -t 1, the

total mass of C02 in the compartment has not changed. Hence

j -T dt = O ; c It,= Vc I,it

Thus by integrating (34) and (36) over a period of time beginning and ending with the same

component mass, we obtain accordingly

Di1 Xj I = B1 +R 1 /00 (38)

=p2 2 = B 2 + R2 (39)

where () denotes a value averaged over the considered time period. Eq. (39) reformulated to

solve the inverse problem for the diffusion parameters _, take the form

j1 D' =L 1  (40)

where

B1 C'  C, ,DT (41.1)

iCB irF 0l
91= 0 i;,C 4 B (41.2)

ij0 4BF

S[(zAC AC5C + -;-), (ZCC6,pPCp +-1-.

a a
(41.3)

(ZCB jI R B + ZFB j EBFB + ai f er d

where i-j ( j ) and j~j P1 - 15)are differences between time averaged values of
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C0 2 tension and pressures associated with pertusion fluxes, respectively.

We note that in (40). the terms expressing the perfusion fluxes have been incorporated in

the k matrix, as they are assumed known (from the solution of the flow problem in which all flow

parameters are known, Sorek ot al. 1988a). However, from the point of view of diffusion, the three

compartments act as a closed system, the equations describing diffusion alone cannot be solved

unless we bring in additional information , e.g. Initial conditions. Mathematically these

considerations manifest themselves by the fact that the matrix in (41.2) is singular. As additional

information let us assume that

DBDC = K I  (42)

where KI is a known value.

By virtue of (40) to (42) we obtain

V -- * . ZCF[zcpCiriF + (ZCBPCB+K 1N B + ZFB P -B'5 p +

(43)
1

B - [(ZCBPCB+K') B +ZFBPF., + I
4B al

Similarly the Inverse problem for HCO 3 " is solved by

C 2 D 2 =L2 (45)

where

_(=[ 2 D2 'D,= 2 ..iT 2

-(4 C P - _yk-Cy 0

C2 = I 0 -(y~-fAe2 4 ) 2(!y 24 ) (62
_(-.= C 2 )e2 2)

- - eBc44 0 -(TAF F--eE)

II
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L2[(Z,.Ct!IP 2 e.(crr5~R)

(46.3)
(ZCB eCB FCB + +F . f2F)J

where

2_2 *2

To allow the solution of (45), we assume, as above, that the value for qAC is known.

D~c = K2  
(47)

Hence in view of (45) to (47), we obtain

D 2' = 1 e
FC- C ZCFPCF CF + ZCB PCB eCB + ZFB 1FB 4/B +

+ K 2(4-4B) -( + RJj (48)

~Dj =T -2 (ZCBPCB4? + ZFBPFBeFB + K(yc-) + Rh(4

The non-linear equations (28) to (30) describe the mass balance of H+( 1w3) in the C, F and

B compartments.

Again, we assume that the mass of the hydrogen ion undergoes continuous changes. The

integration of (28) to (30) over a period at the end of which the mass returns to its initial value, will

eliminate the time derivative and yield a inear set of equations that take the form

C3 D3 . L 3SO
C 3 V 3 =L'(50)

where

_= [kj, D Jc, -D F IT (51.1)



-(c[AcC1c)1 -{cNCP4Jc(CgM 0

c 3 = 0 -{pC (ce)2 - CICA -jcej - QAFCSc (51.2)

_ijeC62-S~h 0 -48JFCAC; - CSAJ

[ ZC(ppHAC + BAC) PACCj +RccC1,

(Zcp (PpHcp + Bc,)PCFCl + RFcp. , (51.3)

* ZCD (ApHCB + BCSpe )C1ce + ZFB (fppHp + BFB )ppBC1 + RB Ch)J ]

To solve for D 3In (50), we assume, as above. that

~BG (52)

where K 3 is a known value.

By virtue of (50) to (52) we obtain

3 1
PC - [ZCF(f PHCF+BCFP)PCFC +ZCB(ApHC +BC)PCBC +

_SJCCJ)2(S3)

+ Zp (ApHFB +BFB )PFB cB - K 3 (C~C34C35C(C) 2 ) _ (R)3+~c)

D 3BF ZCB ( PPHCB +BCB )PCB C1 +
C3C14FCC3C) (54)

+ ZpB ( pHFB +BFR )PFB c + K3 (8C (er) 2 ,Cl& ) + RBC11

After estimating the diffusion parameters, one still has to consider additional parameters.

These are shown in Table 1.

VWh the known parameters we solve for the transport of CO2 , HCO3" and H+ in the

Capillaries, CSF and Brain Tissue compartments. The transport and flow problems are solved

simultaneously.

!t
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BLOOD FLOW CONTROL

In writing the balance equation (5), it is usually assumed that the conductances, Z, are

independent of time. However, in realty, the values of Z vary continuously in response to certain

changes that occur In the cerebrovascular system, In what follows the brain cells are continuously

metabolizing, consuming oxygen and producing carbon dioxide. The changes in the CO 2

production are probably the dominant factor in cerebral blood flow control.

We use a relation (Ponten and Slergo, 1968) between CO 2 tension in the CSF (xA), and in

the arteries (XI).

z; = 8.6 + 0.942 xi (55)

Following Greenberg at al. (1978), we also use the relation between arterial to capillary

blood flow, and xrA (Reivich, 1964).

Ac=- ZAcPAc = 20.9 + 92.8
1+10570 (XI) 2 9S1 (56)

An increase in the amount of CO 2 in the arterial blood bathing the brain causes a dilation of

blood vessels and an increase in the blood flow which carries away CO 2 and reestablishes

normal conditions.

By combining (55) and (56) we find the relation between x;, and ZACPAC. Thus for any

time Instance, knowing the solution for the perfusion pressure fall, PAC (i.e., by solving the fluid's

flow equations) and CO 2 tension In the CSF, zc-, (i.e., by solving the solute transport problem), we

find the appropriate arterial-capillary conductance

1 2 92.8
A 20.9 + 1 + 10570 (4 .6 )-2.81 157)

0.942

Hence we find the change of arterial-capiflary conductance due to changes in perfusion

pressure and CO2 tension.

I4
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SUMMARY AND CONCLUSIONS

A compartmental brain model was developed to describe transport processes of molecular

carbon dioxide (CO2), bicarbonate ion (HCOj) and hydrogen ion (H ) between Brain Tissue (B).

Capillaries - Chorold Plexus (C) and the CSF (F) compartments. The model consists of mass

balance equations (i.e. transport equations) accounting for non-steady advection, diffusion and

generation of constituents due to chemical reactions.

Balance equations are expressed in tension values, of CO 2 , concentration for HCOi, and pH

values and free concentration for W.

The fluid is assumed to be of a constant density, hence allowing decoupling between the

solutions of fluid and of component balance equations. A separate solution is thus obtained for

non steady flow through the cerebrovascular system model by seven compartments: Artery,

Capillary plus Choroid Plexus, Brain Tissue, CSF, Vein, Venous Sinous and Jugular Bulb. This

solution describes the evolution of compartmental perfusion pressure subject to conductances

expressing the case of leakage through semi-pervious boundaries and compliances expressing

compartmental volume rate of change due to boundary displacements (Sorek et al.

1988a-1988c). The non steady flow governs the advection term in the model describing the

transport of chemical components. This enables the study of pathological situations such as

different patterns of initial fluxes that give rise to transient periods of transport; and/or changes in

conductances and compliances because of occlusions.

Generation of components in the physiological fluid within a compartment, is governed by

the stochiometric relation expressing the hydration reaction. Within the capillaries - choroid

plexus and the CSF compartments, the reaction is considered to be instantaneous, hence in

equilibrium. Within the brain tissue compartment, the production of CO2 is assumed to equal the

difference between the reverse and forward reaction rates.

In order to solve for the different components, we need to know various coefficients. Some

of them may be found in different citations. However, most of the boundary diffusivities need still

to be estimated. Therefore, we present a parameter estimation method to assess time averaged

boundary dliffusivities based on time observations of perfusion pressures, C02 tension, HCOi

-m m mmm mmmlm m~m m m N m mmI A
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concentration and pH and free W concentration. For future applications, an assessment is stil

needed of the sensitivity of the transport solution to parameters such as diffusivitles,

conductances and compliances defined at the compartmental boundaries. For example, based on

previous work of the authors (Sorek et al. 1988a-1988c), we note that the relation between

temporal volume change (expressed by the product of boundary compliance and perfusion

pressure drop - Ce, Pt,) and average boundary volume, is much more significant in the

capillaries than in the brain tissue.

Diffusivities, compliances and conductances are assumed as step functions in time i.e. they

may change from one constant value to another because of reasons such as illness, aging, etc.

We relax this assumption for the conductance, ZAC, controlling flow from the arteries to the

capillaries. We Introduce an equation of state that relates this conductance to perfusion pressure

drop between arteries and capillaries and C02 tension in the CSF. Hence, ZAC is changing

continuously in response to excitations from the perfusion pressure and C02 tension. This short

time of response of ZAC describes flow control from arteries to capillaries.
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Table 1: Parameters used in the model simulation.
Some values are after Greenberg et al. (1978), others are after Sorek et al.
(1988a-1988) and Kami et al (1987).

Initial Values

S=30 mmHg. ,io-47 mmHg. - 2.5% VT

- 10 mmHg. io - 48 mmHg. p= 12.5% VT

S 8 mmHg. i = 46 mmHg. =63% VT

Y," 9.5 mmHg.

c- c3=4.4 -10, - 5 mEq  VT = 12 00 mf.
liter

ct 24.74 m- cF3 = 4.8. - - mq
S literliterI . 3 = 9.01 • I o-s mEq"

cl CBliter

Averaged Input parameters

40 mmHg ZAC = 10.7 mmin = 0.036 mi.
m0n= mmHgml/miin ml.

PHA =7.4 ZCF = 0.015 Cp =F 0.209

mmZcg mmHg
CA = C nF.ZS = 0001m/i = 0.049 I

liter mmHgml/min ar = 035ml.

pH c = 7.35 ZFR = 0.075 0375

pHp. = 7.3 pHB = 7.04

i i
.. .., ,
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Table 1: (Corinued)

Physical and chemical parameters

a = 0.31 - m4 M01. c = 10- 10 mliter mmHg lNer

cf =0.131 1/sec. R = 1.7610- 6  liter
mole sec.

Buffering parameters

mnM mM
P C =-16 L-----*A BCA = 2.07 m

L pH unk LpH unit

OF -ft PC =BCA
PB = PcBjF = BcA

Diffusion parameters

VDOK I= 0.9 3.4 liter c. K 1 liter r =K liter

c1c min. min. min.

0 c=O.074 Y = YZ Y& = YA c

0k=0.93 8A - si AJ, = ABC

fr
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(a) Neurone

Cop IC Gi
Blood

Figure 3:

Schematic of the brain model compartments showing both fluid flow (solid arrows) and
diffusion (broken arrows) between compartments. Transport Is (a) between extraceliular

fluid (ECF) and capillary blood, Mb between the capillary blood and cerebrospinal thu~d
(CSF), (cd) between the CSF and ECF, (ef) between the cells (gil. and neurons) and the
ECF (modified from Davson, 1967 and after Greenberg eta!. 1978).
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